

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Table of Contents

	Reference Model

 << Back [https://cntt-n.github.io/CNTT/]

Table of Contents

	Chapter 1 (Overview): Role of NFVi and current state/trends (JB – Intro)

	Introduction[image: E2E]
Figure 1-1: E2E

	Reference Architecture traceability to the CNTT

	Reference Model : explain how the two are related

	Principles

	Scope

	Chapter 2 (Architecture Requirements)

	Foundation (includes Management Plane)

	Bare-Metal provisoning.

	Enabler services: NAT, DHCP, DNS, IDS/IPS and Load Balancing

	Control Plane

	(e.g. needs the ability to do…xyz for this

	control plane provides the API endpoints, GUI and internal services for the cloud.

	All control plane components must be configured to be highly available (HA) and deployed across multiple physical nodes.

	API endpoints and supporting services need to handle failures of an underlying component.

	Control plane much suppport Logging, monitoring and alerting to manage the cloud.
Control plane must be Telemetry enabled to provide insight into utilisation and usage reporting

	Data Plane

	Must allow for tenant networking within a single server and across servers.

	Must support Service function chaining.

	Must provide high throuput and low latency.

	dependong on the targeted profile.

	Must support Netowrk Acceleration (in-line and Look-Aside)

	Must support Application specefic Acceleration (exposed to VNFs).

	Networking

	Must allow for East/West tenant traffic within the cloud (via tunnelled encapsulation overlay - VXLAN or Geneve)

	Must allow for management traffic of the cloud

	Must allow folr management traffic of the servers i.e. IPMI

	Must allow for external access to the API and GUI

	Must allow for tenant external access from other systems or users e.g. Internet/DC networks

	Must allow for storage access network and replication

	Must support VXLAN/Geneve over L3

	Must support Distributed Virtual Routing (DVR) to allow compute nodes to route traffic efficiently.

	Chapter 3 (Architectural Components)

	High Level Diagram for E2E:. [image: High Level]
Figure 1-2: High Level Ref Architecture

	More detailed Diagram (for NFVI and VIM):[image: focused]
Figure 1-3: Focused NFVI VIM Reference Architecture

	Virtual Components (trace to Ref Model)

	Technology choices to satisfy these requirements

	Rationale/Explain why, how, of choices

	Physical components (trace to Ref Model)

	Technology choices to satisfy these requirements

	Rationale/Explain why, how, of choices

	VIM (Aspects, Impacts)

	Technology choices to satisfy these requirements

	Rationale/Explain why, how, of choices

	Components List Diagram:[image: components]
Figure 1-4: Components List

	Chapter 4 (NFVI Interactions with VIM and MANO): in here we should define our standards (JB – aligns w/Ch 7 of model)

	Chapter 5 (Leveraging NFVI for VNFs):

	Optimize: how to use this specific to this NFVI architecture to optimize VFNs behavior (e.g. performance, scalability, elasticity, resilience, etc.)

	Define how VNFs shall behave

	Chapter 6 (Design, Build, Deployment, and Operate Guidelines)

	Security

	Automation

	Lifecycle Management

	(How points downstream to Reference Implementation)

 << Back [https://cntt-n.github.io/CNTT/]

Common NFVI for Telco Reference Model

** Note: This is a live (not released) document and is being updated regularly.

Release Information

Release: 1.0

Version: 1.0

Release Date: 16th July 2019

Version History

| Version | Date | Note
| — | — | — |
| 1.0 | 16th July 2019 | First Release|

Overall Status

Chapter	Status
—	—
Chapter 01	Lots of SME Feedback
Chapter 02	Lots of SME feedback
Chapter 03	Lots of SME Feedback
Chapter 04	Lots of SME feedback
Chapter 05	Lots of SME Feedback
Chapter 06	Lots of SME Feedback
Chapter 07	Still Developing Content
Chapter 08	Still Developing Content
Chapter 09	Initial Framework Only
Chapter 10	Initial Framework Only

Table of Contents

	Abbreviations

	Chapter 01 - Introduction

	Chapter 02 - VNF requirements & Analysis

	Chapter 03 - Infrastructure Abstraction

	Chapter 04 - Catalogue

	Chapter 05 - NFVI SW profiles

	Chapter 06 - NFVI HW profiles

	Chapter 07 - APIs & Interfaces

	Chapter 08 - Security

	Chapter 09 - Operations (OA&M)

	Chapter 10 - Compliance, Verification, and Certification

	Chapter 11 - Challenges and Gaps

Contributors

Item/Chapter	Lead	Priority
——————————————-	———————————————————————————————————————	————
Overall Document & Rapporteur	Rabi Abdel (abdel.rabi@vodafone.com)	
Chapter 1 - Introduction	Beth Cohen (beth.cohen@one.verizon.com)	1
Chapter 2 - VNF requirements and analysis	Ahmed ElSawaf (aelsawaf.c@stc.com.sa)	1
Chapter 3 - Infrastructure Abstraction	Mark Shostak (Mark.Shostak@att.com), Bernard Tsai (Bernard.Tsai@telekom.de), Tom Kivlin (tom.kivlin@vodafone.com)	1
Chapter 4 - Catalogue	Burak Kazan (burak.kazan@turkcell.com.tr)	1
Chapter 5 - SW Config	Karine Sevilla (karine.sevilla@orange.com)	1
Chapter 6 - HW Config	Pankaj Goyal (pg683k@att.com)	1
Chapter 7 - API	Pankaj Goyal (pg683k@att.com)	1 (subset)
Chapter 8 - Security	Beth Cohen (beth.cohen@one.verizon.com)	>1
Chapter 9 - Operations	Mark Shostak (Mark.Shostak@att.com)	>1
Chapter 10 - Compliance and Verification	Rabi Abdel (abdel.rabi@vodafone.com)	>1
Chapter 11 - GAPS	JONATHAN BELTRAN (jb788y@att.com)	>1

 << Back

Abbreviatoins

 << Back

1. Introduction

[image: scope]

Table of Contents

	1.1 Overview & Problem Statement.

	1.2 Terminology.

	1.2.1 Software layers terminology.

	1.2.2 Hardware layers terminology.

	1.2.3 Operational and administrative terminology.

	1.2.4 Other terminology.

	1.3 Principles.

	1.4 How this document works.

	1.5 Scope.

	1.6 Relations to other industry projects.

	1.7 What this document is not covering.

	1.8 Bogo-Meter.

	1.9 Roadmap.

[bookmark: 1.1]

1.1 Overview & Problem Statement

The main concept of NFV (Network Function Virtualization) is the ability to use general purpose compute hardware and platforms to run multiple VNFs (Virtualised Network Functions) and hence achieving the desired CapEx and OpEx savings. However, one of big challenges NFV is facing with VNF vendors is that vendors, while building or designing their virtualized services (whether it’s VoLTE, EPC, or enterprise services like SD-WAN (Software Defined Wide Area Network)), must bring their own set of infrastructure requirements and custom design parameters. This attitude from vendors triggered the creation of various vendor/function specific silos which are incompatible with each other and have different operating models. In addition, this makes the onboarding and certification processes of VNFs (coming from different vendors) hard to automate and standardise.

Therefore, for a true cloud type deployment, a model, which relies on engagement with specific vendors and unique infrastructure, needs to be reversed in a way that there is a lot more consistency on the infrastructure. Vendors need to bring their software to run on pre-defined environment with common capabilities. That common infrastructure, whether it is optimized for IT (Information Technology) workloads, NFV workloads, or even for AI (Artificial Intelligence) workloads, needs to be fully abstracted to VNFs so that it can be a standard offer.

Additionally, to bring the most value to telco operators as well as vendors, agreeing on a standard set of infrastructure profiles for vendors to use for their VNFs is needed within the industry.

The benefits of this approach are:

	Configuration over customisation

	By abstracting the infrastructure capabilities, operators are able to have common infrastructure platforms across all VNF vendors.

	Maintaining a consistent infrastructure allows for higher levels of automation as there is less customisation.

	Overall, this will reduce the total cost of ownership for operators.

	Onboarding and certification

	By defining abstracted infrastructure capabilities, and the metrics by which they are measured, the onboarding and certification process for both NFVI and VNFs can be standardised.

	Supply chain, procurement and assurance teams can also then use these metrics to more accurately assess the most efficient / best value vendor for each scenario.

	Better utilization

	Mapping VNFs to flavours which are properly mapped to IaaS will bring better utilization, than current VNFs expressing variety of instance types as their needs on IaaS.

[bookmark: 1.2]

1.2	Terminology

This section defines the main terms used in this document; these deinitions are primarily based on the ETSI GS NFV 003 V1.4.1 (2018-08) but have been cleaned to avoid deployment technology dependencies when necessary.

[bookmark: 1.2.1]

1.2.1 Software layers terminology

	Network Function Virtualisation (NFV): principle of separating network functions from the hardware they run on by using virtual hardware abstraction.

	Network Function (NF): functional block or application within a network infrastructure that has well-defined external interfaces and well-defined functional behaviour.

	Within NFV, A Network Function is implemented in a form of Virtualised NF or a Containerised NF.

	Network Service (NS): composition of Network Function(s) and/or Network Service(s), defined by its functional and behavioural specification, including the service lifecycle.

	Virtual Network Function (VNF): a software implementation of a Network Function, capable of running on the NFVi.

	VNFs are built from one or more VNF Components (VNFC) and, in most cases, the VNFC is hosted on a single VM or Container.

	Cloud-native (containerised) Network Function (CNF): VNF with a full adherence to cloud native principles, or a VNF that is transitioning to cloud native.

Note: It is a containerised VNF that is microservices-oriented, to increase agility and maintainability, and that can be dynamically orchestrated and managed to optimize resource utilization; the containers can be Linux, Docker or other similar container technology.

	Virtual Application (VA): is more of a general term for software which can be loaded into a Virtual Machine.

Note: a VNF is one type of VA.

	Workload: Workload refers to software running on top of compute resources such as VMs or Containers. Most relevant workload categories in context of NFVI are:

	Data Plane Workloads: are related to packet handling in an end-to-end communication between applications. These tasks are expected to be very intensive in I/O operations and memory read/write operations.

	Control Plane Workloads: are the task related to any other communication between NFs that is not directly related to the end-to-end data communication between applications. This category includes session management, routing or authentication.

	Storage Workloads: are all tasks related to disk storage, from the non-intensive logging of a router, to more intensive read/write operations.

	Virtual Machine (VM): virtualised computation environment that behaves like a physical computer/server.

Note: a VM consists of all of the components (processor (CPU), memory, storage, interfaces/ports, etc.) of a physical computer/server. It is created using Instance Type together with sizing information or Compute Flavour.

	Instance type: specifies a set of virtualized hardware resources and capabilities used for the creation of a virtual compute on which a workload runs on; includes capability specifications such as CPU, storage, and memory.

	Instance: is a virtual compute resource, in a known state such as running or suspended, that can be used like a physical server. NOTE: can be used to specify VM Instance or Container Instance.

	Compute flavour: defines the compute, memory, and storage capacity, and the capabilities of the physical compute server that the virtual compute resource can run on.

Note: used to define the configuration/capacity limit of a virtualised container.

	VM instances Catalogue: Pre-defined instance types and compute flavours.

	Container: a container provides operating-system-level virtualization by abstracting the “user space”. One big difference between Containers and VMs is that containers “share” the host system’s kernel with other containers.

	Network Function Virtualisation Infrastructure (NFVI): totality of all hardware and software components that build up the environment in which VA are deployed.

Note: The NFV-Infrastructure can span across several locations, e.g. places where data centres are operated. The network providing connectivity between these locations is regarded to be part of the NFVI. NFVI and VNF are the top-level conceptual entities in the scope of Network Function Virtualisation. All other components are sub-entities of these two main entities.

	Virtual resources:

	Virtual Compute resource (a.k.a. virtualised container): partition of a compute node that provides an isolated virtualised computation environment.

	Virtual Storage resource: virtualised non-volatile storage allocated to a virtualised computation environment hosting a VNFC

	Virtual Networking resource: routes information among the network interfaces of a virtual compute resource and physical network interfaces, providing the necessary connectivity

	Hypervisor: software that partitions the underlying physical resources and allocates them to Virtual Machines.

	Container Engine: Software components used to create, destroy, and manage containers on top of an operating system.

	NFVI Software Profile (NFVI SW Profile): defines the behaviour, capabilities and metrics provided by an NFVI Software Layer

	NFVI Software Configuration (NFVI SW Configuration): a set of settings (Key:Value) that are applied/mapped to NFVI SW deployment.

[bookmark: 1.2.2]

1.2.2 Hardware layers terminology

	Physical Network Function (PNF): Implementation of a network function via tightly coupled dedicated hardware and software system. NOTE: it is a physical NFVi resource with the NF software.

	Hardware resources: Compute/Storage/Network hardware resources on which the NFVI platform software, virtual machines and containers run on.

	NFVI Hardware Profile: defines the behaviour, capabilities and metrics provided by an NFVI Hardware Layer.

	Host Profile: is another term for a NFVI hardware profile.

	NFVI Hardware Configuration: a set of settings (Key:Value) that are applied/mapped to NFVI HW deployment.

[bookmark: 1.2.3]

1.2.3 Operational and administrative terminology

	Tenant: one or more service users, in an administrative realm, sharing access to a set of physical, virtual or service resources.

	Tenant (Internal) Networks: virtual networks that are internal to tenant instances.

	External Network: External networks provide network connectivity for an NFVI tenant to resources outside of the tenant space.

	Quota: upper limit on specific types of resources, usually used to prevent excessive resource consumption in the VIM by a given consumer (tenant).

	Resource pool: logical grouping of NFVI hardware and software resources. A resource pool can be based on a certain resource type (for example, compute, storage, network) or a combination of resource types. An NFVI resource can be part of none, one or more resource pools.

	Compute Node: abstract definition of a server.

	Service Assurance (SA): collects alarm and monitoring data. Applications within SA or interfacing with SA can then use this data for fault correlation, root cause analysis, service impact analysis, SLA management, security, monitoring and analytic, etc.

[bookmark: 1.2.4]

1.2.4 Other terminology

	Virtualised Infrastructure Manager (VIM): responsible for controlling and managing the NFVI compute, storage and network resources.

	NFV Orchestrator (NFVO): manages the VNF lifecycle and NFVI resources (supported by the VIM) to ensure an optimised allocation of the necessary resources and connectivity.

[bookmark: 1.3]

1.3	Principles

This section specifies the principles of infrastructure abstraction and profiling work presented by this document.

	NFVI provides abstract and physical resources corresponding to:

	Compute resources.

	Storage resources.

	Networking resources. (Limited to connectivity services).

	Acceleration resources.

	NFVI exposed resources should be supplier independent.

	All NFVI APIs must be standard and open to ensure components substitution.

	NFVI resources are consumed by VNFs through standard and open APIs.

	NFVI resources are configured on behalf of VNFs through standard and open APIs.

	NFVI resources are discovered/monitored by management entities (such as orchestration) through standard and open APIs.

	VNFs should be modular and utilise minimum resources.

	NFVI shall support pre-defined and parameterized T-Shirt sizes.

	T-Shirt sizes will evolve with time.

	NFVI provides certain resources, capabilities and features and virtual applications (VA) should only consume these resources, capabilities and features.

	VNFs that are designed to take advantage of NFVI accelerations should still be able to run without these accelerations with potential performance impacts.

	An objective of CNTT is to have a single, overarching Reference Model and the smallest number of Reference Architectures as is practical. Two principles are introduced in support of these objectives:

	Minimize Architecture proliferation by stipulating compatible features be contained within a single Architecture as much as possible:

	Features which are compatible, meaning they are not mutually exclusive and can coexist in the same NFVI instance, shall be incorporated into the same Reference Architecture. For example, IPv4 and IPv6 should be captured in the same Architecture, because they don’t interfere with each other

	Focus on the commonalities of the features over the perceived differences. Seek an approach that allows small differences to be handled at either the low level design or implementation stage. For example, assume the use of existing common APIs over new ones.

	Create an additional Architecture only when incompatible elements are unavoidable:

	Creating additional Architectures is limited to when incompatible elements are desired by Taskforce members. For example, if one member desires KVM be used as the hypervisor, and another desires ESXi be used as the hypervisor, and no compromise or mitigation* can be negotiated, the Architecture could be forked, subject to review and vote to approve by the CNTT technical Working Group, such that one Architecture would be KVM-based and the other would be ESXi-based.

*Depending on the relationships and substitutability of the component(s) in question, it may be possible to mitigate component incompatibility by creating annexes to a single Architecture, rather than creating an additional Architecture. With this approach, designers at a Telco would implement the Architecture as described in the reference document and when it came to the particular component in question, they would select from one of the relevant annexes, their preferred option. For example, if one member wanted to use Ceph, and another member wanted to use Swift, assuming the components are equally compatible with the rest of the Architecture, there could be one annex for the Ceph implementation and one annex for the Swift implementation.

[bookmark: 1.4]

1.4	How this document works

There are three level of documents needed to fulfil the CNTT vision. They are, as highlighted in Figure 1-4: Reference Model, Reference Architecture, and Reference Implementation.

[image: scope]

Figure 1-4: Scope of CNTT

	Reference Model: (This document) focuses on the NFVI Abstraction and how NFVI services and resources are exposed to VNFs.

	Reference Architecture: High level NFVI system components and their interactions to deliver on the Reference Model goals. It is expected that at least one, but not more than a few, Reference Architecture will conform to the Reference Model.

	Reference Implementation: Focuses on the design and implementation of a NFVI Reference Architecture. Each Reference Architecture is expected to be implemented by at least one Reference Implementation.

[bookmark: 1.5]

1.5	Scope

This document focuses on the Reference Model. Figure 1-5 below highlights its scope in more details.

[image: scope]

Figure 1-5: Scope of Reference Model
This document specifies:

	NFVI Infrastructure abstraction

	NFVI metrics & capabilities: A set of carrier grade metrics and capabilities of NFVI which VNFs require to perform telco grade network functions.

	Infrastructure profiles catalogue: A catalogue of standard profiles needed in order to completely abstract the infrastructure from VNFs. With a limited and well defined profiles and well understood characteristics, VNF compatibility and performance predictability can be achieved.

The current focus is for VMs but the intention is to expand the definition to include Container profiles too.

	NFVI Software and Hardware profiling

	NFVI software profiles and configurations: These are software profiles and configurations that maps directly to the infrastructure profiles within the infrastructure profiles catalogue.

	NFVI hardware profiles and configurations: These are hardware profiles and configurations which are suitable for the defined NFVI software profiles & configurations.

	Compliance and verification

	Certification programs: Define the requirement for certification programs for both VNFs and NFVI.

	Test framework: Provide test suites to allow compliance, certification, and verification of VNFs and NFVI against the defined set of profiles.

[bookmark: 1.6]

1.6	Relations to other industry projects

Regarding the ETSI NFV architecture specified by ETSI GS NFV002, the scope of this document is only, but the entirety of, the NFVI part, including its external reference points.
A mapping of the functional blocks considered in that document to that NFV architecture is illustrated in Figure 1-6 below

[image: mapping]

Figure 1-6: Mapping to ETSI NFV architecture
Following ETSI model, Figure 1-6, the VIM, Virtualised Infrastructure Manager, which controls and manages the NFVI, is not included into NFVI. Nevertheless, the interactions between NFVI and VIM will be part of this document as infrastructure resources management and orchestration have a strong impact on NFVI. These interactions will be detailed in Chapter 7 “API & Interfaces”.

[bookmark: 1.7]

1.7	What this document is not covering

Comment: This section is still under development.

[bookmark: 1.8]

1.8	Bogo-Meter

A carefully chosen “Bogo-Meter” rating at the beginning of each chapter indicates the completeness and maturity each chapter’s content, at a glance.

[bookmark: 1.9]

1.9	Roadmap

Comment: Please Contact the CNTT team for access to the Roadmap

 << Back

2	VNF requirements & Analysis

[image: scope]

Table of Contents

	2.1 VNFs collateral.

	2.2 Analysis.

	2.3 NFVI Profiles.

The NFV Infrastructure (NFVI) is the totality of all hardware and software components which build up the environment in which VNFs/VAs are deployed, managed and executed. It is, therefore, inevitable that different VNFs/VAs would require different capabilities and have different expectations from it.

One of the main targets of the CNTT is to define an agnostic NFVI and removes any dependencies between VNFs/VAs and the deployed Infrastructure (NFVI) and offer NFVI to VNFs/VAs in an abstracted way with defined capabilities and metrics.

This means, operators will be able to host their Telco Workload (VNF) with different traffic types, behaviour and from any vendor on a unified consistent Infrastructure.

Additionally, a well defined NFVI is also needed for other type of workloads than NFV such as IT, Machine learning, Artificial Intelligence, etc.

In this chapter we try to analyse various VNF types used in telco and examine their requirements. We will also highlight some of the NFVI parameters needed to achieve the desired performance expected by various workloads.

[bookmark: 2.1]

2.1 VNFs collateral

There are many ways that VNFs can be classified, for example:

	By Traffic Type:

	User Plane (Data Plane)

	Control Plane (Signalling Plane).

	Management Plane.

	By Service offered:

	Mobile broadband service: vEPC, vDPI, vGI-FW

	Fixed broadband Service vBNG, vDPI

	VoLTE / VoWifi : vIMS , UDC , HSBC , vEPDG.

	VASs : vSMS-C , vCDN , vCGNAT

	By Technology: (2G, 3G, 4G, 5G, Fixed…)

Below is a list of Network Functions that covers almost 95% of the Telco workload (and the most likely to be virtualized/moved to cloud). They don’t follow any specific categorisation.

Note: definition of some of the VNFs below is based on 3GPP definitions.

	EPC Nodes (Evolved Packet Core Nodes) – 3GPP TS 23.002 R15 Network architecture

	MME: MME is the control plane entity within EPS supporting functions Mobility Management,[Control Plane]

	SGW (With CUPS, Control Plane & User Plane Separation, they will be split to SGW-C & SGW-U)

	PGW (With CUPS, Control Plane & User Plane Separation, they will be split to PGW-C & PGW-U)

	Serving GW: The Serving GW is the gateway which terminates the interface towards E-UTRAN. [Control / Data Plane] forwarding traffic from/toward RAN, Mobility anchor for 3GPP access [Control / Data Plane]

	The PDN GW is the gateway which terminates the SGi interface towards the PDN. [User Plane], mobility anchor for non 3GPP (Wifi) [User Plane].

	EPDG : evolved packet data gateway (ePDG) : interconnect non 3GPP access with 3GPP core (VoWifi) [User Plane / Control Plane]

	3GPP AAA: Authentication, Authorization, and Accounting

	PCRF: Policy and Charging Rules Function (PCRF) to provide subscription and policy management for 3G and 4G mobile networks [Control Plane]

	OCS: Online Charging system [Control Plane]

	HSS: The Home Subscriber Server, The HSS is the master database for a given user. It is the entity containing the subscription-related information to support the network entities actually handling calls/sessions. [Control Plane]

	HLR: The Home Location Register (HLR) [Control Plane]

	DRA: Diameter Routing Agent [Control Plane]

	SCEF: Service Capability Exposure Function, to securely expose the services and capabilities provided by the 3GPP network interfaces.

	Circuit Switched - Media Gateway Function (CS-MGW)

	MSC Server

	Serving GPRS Support Node (SGSN); The location register function in the SGSN stores two types of subscriber data needed to handle originating and terminating packet data transfer:

	Gateway GPRS Support Node (GGSN); The location register function in the GGSN stores subscriber data received from the HLR and the SGSN

	Deep packet inspection (DPI) for network data processing for reporting and other services on mobile and fixed networks.

	SBC: Session Border Controller (SBC): Secures voice over IP (VoIP) infrastructures while providing interworking between incompatible signalling messages and media flows (sessions) from end devices or application servers. [Payload]

	SMS-C : SMS Center [Control Plane]

	Other Core/Main VNFs - 3GPP TS 23.002 R15 Network architecture

	cRAN – Centralized Unit (CU) BBU, in 5G will be DU and CU

	IMS (IP-Multimedia Subsystem):

	CSCF : Call Session Control Function [control]

	MTAS mobile telephony application server[control]

	MRF: Media Resource Function [user plane]

	Enum : [control]

	BGCF : Border gateway control function [control] . interconnect

	MGCF: Media Gateway control function :

	DNS Domain Name System

	AAA: Authentication, authorization, and accounting (AAA) services

	UDC: User Data Convergence

	HSS-FE: Home Subscriber Server) is a database that contains user-related and subscriber-related information

	HLR–FE: Home Location Register

	AAA-FE

	MNP-FE: Mobile Number Portability

	EIR–FE: Equipment Identity Register

	UDR: User Data Repository is a functional entity that acts as a single logical repository that stores converged user data

	Carrier-Grade Network Address Translation (CG-NAT) for IPv4 optimization of mobile and fixed networks.

	Transmission Control Protocol (TCP) optimization for improved customer experience in 3G/4G mobile networks

	Gi Firewall

	IPSEC GW

	IPS/IDS

	DDOS

	Access :

	OLT

	BNG: Border Network Gateway / broadband remote access server

	RGW: Residential gateway

	Wifi Controller [Control Plane]

	CDN: Content delivery network

	For 5G:

	Core nodes: Virtualized by nature and strong candidate to be onboarded onto Telco Cloud as “cloud-native application”

	AMF: The Access and Mobility Management function (AMF)

	SMF The Session Management function (SMF)

	UPF: The User plane function (UPF)

	NSSF: The Network Slice Selection Function (NSSF)

	NRF: The Network Repository Function (NRF)

	NEF: The Network Exposure Function (NEF)

	UDM: The Unified Data Management (UDM)

	UDR: The Unified Data Repository (UDR

	PCF: The Policy Control Function (PCF)

	AUSF: The Authentication Server Function (AUSF)

	AF: The Application Function (AF) interacts.

Note: for 5G Service-based Architecture (SBA) all Network Functions are stateless (store all sessions/ state on unified data repository UDR)

[bookmark: 2.2]

2.2 Analysis

Studying various requirements of VNFs helps understanding what expectation they will have from the underlying NFVI. Following are some of the requirement you might expect by various workloads:

	Number of VNFC

	Networking between VNFC

	Enhanced Platform awareness (EPA)

	CPU Pinning

	SR-IOV

	Affinity / Anti-affinity rules

	Huge Pages

	NUMA alignment

	DPDK

	Hyper-Threading/SMT

	Packet per Second

	User Space

	Security

	Advanced Encryption Standard – New Instructions (Intel® AES – NI).

	SELinux

	Storage requirements

	Ephemeral or Persistence.

	Number of IOPS required

	Volume

By trying to categorise VNF components into different categories based on the requirement observed, below are the different profiles concluded:

	Profile One - Signalling / Control traffic profile/ Management OSS/BSS and Non-Telco workload:

	Low throughput

	A small number of Network cards

	Low PPS

	EPA enabled (in some cases)

	Example: (PCRF, IMS, NMS)

	Profile Two - Network Intensive Workloads:

	High throughput

	Multiple Network Interfaces.

	High PPS

	EPA enabled

	Example: BNG, CDN, EPC

	Profile Three - Compute Intensive Workloads:

	Algorithmic Intensive

	GPU.

	Smart NIC / FPGA

	Example: SEC-GW, Firewall, DPI

	Profile Four - Storage Intensive Workloads:

	Hight IOPS

	Hight capacity

	EPA enabled

	Example: UDR

[bookmark: 2.3]

2.3 NFVI Profiles

Based on the above analysis, following NFVI profiles are proposed (Also shown in Figure 2-1 below)

	Basic: VNFs with VNF-Cs that perform basic compute operations.

	Network intensive: VNFs with VNF-Cs that perform network intensive operations with high throughput and low latency requirements.

	Compute Intensive: VNFs with VNF-Cs that perform compute intensive operations with low latency requirements.

	Storage Intensive: VNFs with VNF-Cs that perform storage intensive operations with high IPOS requirements. (Note: Storage Intensive Profile will not be defined in initial CNTT releases)

Note: 	This is an initial set of proposed profiles and it is expected that more profiles will be added as more requirements are gathered and as technology enhances and matures.

[image: infra_profiles]

Figure 2-1: Infrastructure profiles proposed based on VNFs categorisation.
On Chapter 4 later in the document, those infrastructure profiles will be offered to VNFs in form of instance types: B (Basic), N (Network intensive), and C (Compute intensive) respectively.

 << Back

3	Infrastructure Abstraction

[image: bogo]

Table of Contents

	3.1 Model.

	3.2 Exposed vs Internal.

	3.3 Exposed NFVI capabilities, metrics.

	3.3.1 Exposed NFVI capabilities.

	3.3.2 Exposed NFVI metrics.

	3.4 Internal NFVI capabilities and metrics.

	3.4.1 Internal NFVI capabilities.

	3.4.2 Internal NFVI metrics.

	3.5 VIM capabilities and metrics.

	3.5.1 VIM capabilities.

	3.5.2 VIM metrics.

There is the necessity to clearly define which kind of infrastructure resources a shared network function virtualisation infrastructure (NFVI) will provide for hosting workloads including virtual network functions (VNFs) and/or cloud-native network functions (CNF), so that the requirements of the workloads match the capabilities of the NFVI.

The lack of a common understanding of which resources and corresponding capabilities a suitable NFVI should provide may lead to several issues which could negatively impact the time and the cost for on-boarding and maintaining these solutions on top of a virtualised infrastructure. For Example:

	Supporting any kind of workload specific requirements (e.g. regarding network acceleration or API access) might result in having to establish different silo of NFVIs for each workload type.

	Synchronising the release cycles of a large set of different technologies will sooner or later lead to situations in which required upgrades cannot be applied easily due to incompatibilities.

The abstraction model presented in this chapter specifies a common set of virtual infrastructure resources which NFVI will need to provide to be able to host most of the typical VNF/CNF workloads required by the operator community.

Although a couple of explicit and implicit abstraction models (e.g. in the context of ETSI NFV) are already available, they fall short when addressing the following design principles:

	Scope: the model should describe the most relevant virtualised infrastructure resources (incl. acceleration technologies) an NFVI needs to provide for hosting Telco workloads

	Separation of Concern: the model should support a clear distinction between the responsibilities related to maintaining the network function virtualisation infrastructure and the responsibilities related to managing the various VNF workloads

	Simplicity: the amount of different types of resources (including their attributes and relationships amongst one another) should be kept to a minimum to reduce the configuration spectrum which needs to be considered

	Declarative: the model should allow for a declarative description of the required NFVI capabilities for on-boarding and maintaining workloads

	Explicit: the model needs to be rich enough to allow for a direct mapping towards the APIs of NFVIs for the instantiation of virtual infrastructure elements without requiring any additional parameters

	Lifecycle: the model must distinguish between resources which have independent lifecycles but should group together those resources which share a common lifecycle

	Aligned: the model should clearly highlight the dependencies between the elements to allow for a well-defined and simplified synchronisation of independent automation tasks.

To summarise: the abstraction model presented in this document will build upon existing modelling concepts and simplify and streamline them to the needs of telco operators who intend to distinguish between infrastructure related and workload related responsibilities.

[bookmark: 3.1]

3.1	Model

The abstraction model for the NFVI makes use of the following layers (only the virtual infrastructure layer will be directly exposed to workloads (VNFs/CNFs)):

[image: NFVI model_layers]

Figure 3-1: NFVI Model Layers.
The functionalities of each layer are as follows:

	Physical Infrastructure Resources: This layer consists of physical hardware components such as servers, (including random access memory, local storage, network ports, and hardware acceleration devices), storage devices, network devices, etc. and the basic input output system (BIOS).

	NFVI Software: This layer consists of both the host Operating System (OS) responsible for managing the physical infrastructure resources as well as the virtualization/containerization technology which, on request, dynamically allocates hardware components and exposes them as virtual resources.

	Virtual Infrastructure Resources: This layer represents all the infrastructure resources (compute, storage and networks) which the NFVI provides to the workloads such as VNFs/CNFs. These virtual resources can be managed by the tenants and tenant workloads directly or indirectly via an application programming interface (API).

	Workloads (VNFs/CNFs): This layer consists of workloads such as virtualized and/or containerized network functions that run on top of a VM or as a Container. The virtual infrastructure resources provided by the NFVI can be grouped into four categories as shown in the diagram in Figure 3-2.

The virtual infrastructure resources provided by the NFVI can be grouped into four categories as shown in the diagram below:

[image: virtual_resources]

Figure 3-2: Virtual Infrastructure Resources provides virtual compute, storage and networks in a tenant context.

	Tenants: represent an independently manageable logical pool of compute, storage and network resources

	Compute resources: represent virtualised computes for workloads and Operating and other Systems as necessary

	Storage resources: represent virtualised resources for persisting data

	Network resources: represent virtual resources providing layer 2 and layer 3 connectivity

The virtualised infrastructure resources related to these categories are listed below:

Tenant

A network function virtualisation infrastructure (NFVI) needs to be capable of supporting multiple tenants and has to isolate sets of infrastructure resources dedicated to specific workloads (VNF/CNF) from one another. Tenants represent an independently manageable logical pool of compute, storage and network resources abstracted from physical hardware. Example: a tenant within an OpenStack environment or a Kubernetes cluster.

Attribute	Description
———–	———————————————————————————————————
name	name of the logical resource pool
type	type of tenant (e.g. OpenStack tenant, Kubernetes cluster, …)
vcpus	max. number of virtual CPUs
ram	max. size of random access memory in GB
disc	max. size of ephemeral disc in GB
networks	description of external networks required for inter-domain connectivity
metadata	key/value pairs for selection of the appropriate physical context (e.g. location, availability zone, …)

Table 3-1: Attributes of a tenant.

Compute

A virtual machine or a container/pod belonging to a tenant capable of hosting the application components of workloads (VNFs). A virtual compute therefore requires a tenant context and since it will need to communicate with other communication partners it is assumed that the networks have been provisioned in advance. Example: a virtual compute descriptor as defined in TOSCA Simple Profile for NFV.

Attribute	Description
—	—
name	name of the virtual host
vcpus	number of virtual cpus
ram	size of random access memory in GB
disc	size of root disc in GB
nics	sorted list of network interfaces connecting the host to the virtual networks
acceleration	key/value pairs for selection of the appropriate acceleration technology
metadata	key/value pairs for selection of the appropriate redundancy domain

Table 3-2: Attributes of compute resources.

Storage

A block device of a certain size for persisting information which can be created and dynamically attached to/detached from a virtual compute. A storage device resides in a tenant context and exists independently from any compute host. Example: an OpenStack cinder volume.

Attribute	Description
—	—
name	name of storage resources
size	size of disc in GB
attachments	list of compute hosts to which the device is currently attached
acceleration	key/value pairs for selection of the appropriate acceleration technology
metadata	key/value pairs for selection of the appropriate redundancy domain

Table 3-3: Attributes of storage resources.
Comments: we need to be more specific regarding acceleration and metadata.

Network

A layer 2 / layer 3 communication domain within a tenant. A network requires a tenant context. Example: a virtual compute descriptor as defined in TOSCA Simple Profile for NFV.

Attribute	Description
—	—
name	name of the network resource
subnet	network address of the subnet
acceleration	key/value pairs for selection of the appropriate acceleration technology

Table 3-4: Attributes of network resources.
[bookmark: 3.2]

3.2	Exposed vs Internal

The following pertains to the context of NFVI Capabilities, Metrics and Constraints, as discussed within this chapter.

Exposed: Refers to any mechanism (e.g., discovery, configuration, consumption, telemetry, some object, API, Interface, etc.) that exists in or pertains to, the domain of the NFVI and is made visible (aka “Exposed”) to a tenant and/or VNF in the workload domain. When an object is exposed to a given tenant or VNF, the scope of visibility within a given VNF is at the discretion of the specific VNF’s designer. From an Infra perspective, the Infra-resident object is simply being exposed to one or more virtual environments (i.e. VMs). It is then the responsibility of the kernel or supervisor/executive within the VM to control how, when and where the object is further exposed within the VM, with regard to permissions, security, etc. As the object(s) originate with the NFVI or Control Plane, they are by definition visible within those domains.

Internal: Effectively the opposite of Exposed; objects Internal to the NFVI, which are exclusively available for use by the NFVI and components within the NFVI control plane.

[image: Exposed vs. Internal Scope]

Figure 3-3: Exposed vs. Internal Scope
As illustrated in the figure above, objects designated as “Internal” are only visible within the area inside the blue oval (the NFVI), and only when the entity accessing the object has the appropriate permissions. Whereas objects designated as “Exposed” are potentially visible from both the area within the green oval (the Workload), as well as from within the NFVI, again provided the entity accessing the object has appropriate permissions.

Note: The figure above indicates the areas from where the objects are visible. It is not intended to indicate where the objects are instantiated. For example, the virtual resources are instantiated within the NFVI (the blue area), but are Exposed, and therefore are visible to the Workload, within the green area.

[bookmark: 3.3]

3.3	Exposed NFVI capabilities and metrics

[bookmark: 3.3.1]

3.3.1	Exposed NFVI capabilities

This section describes a set of explicit NFVI capabilities and metrics that define an NFVI. These capabilities and metrics are well known to VNFs as they provide capabilities which VNFs rely on.

Note: 	It is expected that NFVI capabilities and metrics will evolve with time as more capabilities are added as technology enhances and matures.

3.3.1.1	Exposed resource capabilities

Table 3-5 below shows resource capabilities of NFVI. Those indicate resources offered to VNFs by NFVI.

[bookmark: Table3-5]

Ref	NFVI capability	Unit	Definition/Notes
——————–	—————————————————-	——–	——————————————————————————-
e.nfvi.res.cap.001	#vCPU cores	number	Min, Max number of vCPU cores that can be assigned to a single VNF-C
e.nfvi.res.cap.002	Amount of RAM (MB)	MB	Min, Max memory in MB that can be assigned to a single VNF-C by NFVI.
e.nfvi.res.cap.003	Total amount of instance (ephemeral) storage (GB)	GB	Min, Max storage in GB that can be assigned to a single VNF-C by NFVI
e.nfvi.res.cap.004	# vNICs	number	Max number of vNIC interfaces that can be assigned to a single VNF-C by NFVI.
e.nfvi.res.cap.005	Total amount of external (persistent) storage (GB)	GB	Min, Max storage in GB that can be attached / mounted to VNF-C by NFVI.

Table 3-5: Exposed resource capabilities of NFVI.

3.3.1.2 Exposed performance optimisation capabilities

Table 3-6 shows possible performance optimisation capabilities that can be provided by NFVI. These indicate capabilities exposed to VNFs. Those capabilities need to be consumed by VNFs in a standard way.

[bookmark: Table3-6]

Ref	NFVI capability	Unit	Definition/Notes
——————–	—————————	——–	——————————————–
e.nfvi.per.cap.001	CPU pinning support	Yes/No	Determining if NFVI support CPU pinning
e.nfvi.per.cap.002	NUMA support	Yes/No	Determining if NFVI support NUMA awareness
e.nfvi.per.cap.003	IPSec Acceleration	Yes/No	IPSec Acceleration
e.nfvi.per.cap.004	Crypto Acceleration	Yes/No	Crypto Acceleration
e.nfvi.per.cap.005	Transcoding Acceleration	Yes/No	Transcoding Acceleration
e.nfvi.per.cap.006	Programmable Acceleration	Yes/No	Programmable Acceleration

Table 3-6: Exposed performance optimisation capabilities of NFVI.

3.3.1.3	Exposed monitoring capabilities

Table 3-9 shows possible monitoring capabilities available by NFVI for VNFs.

[bookmark: Table3-7]

Ref	NFVI capability	Unit	Definition/Notes
——————–	—————————	——–	—————————————————-
e.nfvi.mon.cap.001	Monitoring of L2-7 data	Yes/No	Ability for VNF-C to monitor their own L2-L7 data.

Table 3-7: Exposed monitoring capabilities of NFVI.
[bookmark: 3.3.2]

3.3.2	Exposed NFVI metrics

The intent of those metrics is to be well known to VNFs.

3.3.2.1	Exposed performance metrics

The following shows performance metrics per VNF-C, vNIC or vCPU.

[bookmark: Table3-8]

Ref	NFVI metric	Unit	Definition/Notes
——————	————————-	——————-	————————————————————
e.nfvi.per.met.001	Network throughput	bits/s or packets/s	Max throughput per vNIC (as aligned with ETSI GS NFV-TST 009 [2])
e.nfvi.per.met.002	Network latency	second	Max round trip time to vNIC (as aligned with ETSI GS NFV-TST 009 [2])
e.nfvi.per.met.003	Network Delay Variation	second	Max packet delay variation (a.k.a., jitter) of round trip time to vNIC (as aligned with ETSI GS NFV-TST 009 [2])
e.nfvi.per.met.004	Simultaneous active flows	number	Max simultaneous active L4 flows per vNIC before a new flow is dropped
e.nfvi.per.met.005	New flows rate	flows/s	Max new L4 flow rate per vNIC
e.nfvi.per.met.006	Storage throughput	bytes/s or IO/s	Max throughput per virtual block storage unit assigned to VNF-C
e.nfvi.per.met.007	Processing capacity	test-specific	Processing capacity test-specific score per vCPU

Table 3-8: Exposed performance metrics of NFVI.
[bookmark: 3.4]

3.4	Internal NFVI capabilities metrics, and constraints

This section covers a list of implicit NFVI capabilities and metrics that define the interior of NFVI. These capabilities and metrics determine how the NFVI behaves internally. They are hidden from VNFs (i.e. VNFs may not know about them) but they will have a big impact on the overall performance and capabilities of a given NFVI solution.

Note: 	It is expected that implicit NFVI capabilities and metrics will evolve with time as more capabilities are added as technology enhances and matures.

[bookmark: 3.4.1]

3.4.1	Internal NFVI capabilities

3.4.1.1	Internal resource capabilities

Table 3-13 shows resource capabilities of NFVI. These include capabilities offered to VNFs and resources consumed internally by NFVI.

[bookmark: Table3-9]

Ref	NFVI capability	Unit	Definition/Notes
——————–	—————————————————————————	————————	———————————————————————————————————————
i.nfvi.res.cap.001	Percentage of vCPU cores consumed by NFVI overhead in a compute node.	% (of total available)	Indicates the percentage of vCPU cores consumed (wasted) by NFVI components (including host OS) in a compute node.
i.nfvi.res.cap.002	Percentage of memory consumed by NFVI overhead in a compute node.	% (of total available)	Indicates the percentage of memory consumed (wasted) by NFVI components (including host OS) in a compute node.

Table 3-9: Internal resource capabilities of NFVI.

 4 Catalogue

 << Back

4	Catalogue

[image: scope]

Table of Contents

	4.1 Compute flavours.

	4.1.1 Predefined Compute flavours.

	4.2 Network Interface Specifications.

	4.3 Storage Extensions.

	4.3.1 Available storage extensions.

	4.4 Instance types.

	4.4.1 B Instances (Basic).

	4.4.2 N Instances (Network Intensive).

	4.4.3 C Instances (Compute Intensive).

	4.4.4 Network Interface Options.

	4.5 Instance capabilities and metrics.

	4.5.1 Instance capabilities.

	4.5.2 Instance metrics.

	4.6 One stop shop.

	4.6.1 Naming convention.

Infrastructure exposes sets of capabilities, metrics, compute flavours, interface options, storage extensions, and acceleration capabilities to VNFs. Those sets are offered to VNFs in form of instance types with their corresponding options and extensions.

The idea of the infrastructure instances catalogue is to have a predefined set of instance types with a predefined set of compute flavours (sometimes referred to as T-shirt sizes) which VNF vendors use to build their VNFs. Each VNF uses one or more of those compute flavours (with one or more of offered instance types) to build its overall functionality as illustrated in Figure 4-1.

[image: vnf_design]

Figure 4-1: VNFs built against standard instance types and compute flavours.
[bookmark: 4.1]

4.1 Compute flavours

Flavours represent the compute, memory, storage capacity, and management network resource templates that are used to create the VMs on the compute hosts. Each VM instance is given a flavour (resource template), which determines the instance’s core, memory and storage characteristics.

Flavours can also specify secondary ephemeral storage, swap disk, etc. A compute flavour geometry consists of the following elements:

Element |Description
——–|———-
Name	|A descriptive name
Virtual compute resources (aka vCPUs) |Number of virtual compute resources (vCPUs) presented to the instance.
Memory MB	|Instance memory in megabytes.
Ephemeral/Local Disk |Specifies the size of an ephemeral data disk that exists only for the life of the instance. Default value is 0.
The ephemeral disk may be partitioned into boot (base image) and swap space disks.
Is Public	|Boolean value, whether flavor is available to all users or private to the project it was created in. Defaults to True.

Table 4-1: Flavour Geometry Specification.
[bookmark: 4.1.1]

4.1.1	Predefined Compute flavours

The intent of the following flavours list is to be comprehensive and yet effective to cover both IT and NFV workloads. The compute flavours are specified relative to the standardised “large” flavour. The standard “large” flavour configuration consists of 4 vCPUs, 8 GB of RAM and 80 GB of local disk, and the resulting instance will have a management interface of 1 Gbps. The “medium” flavour is half the size of a large and small is half the size of medium. The tiny flavour is a special sized flavour.

Note: Customised (Parameterized) flavours can be used in concession by operators and , if needed, are created using TOSCA, HEAT templates and/or VIM APIs.

.conf |vCPU (“c”) |RAM (“r”) |Local Disk (“d”) | Managmenet Interface
—–|————|———-|—–|—–
.tiny	|1	|512 MB	|1 GB	|1 Gbps
.small	|1	|2 GB	|20 GB 	|1 Gbps
.medium	|2	|4 GB	|40 GB	|1 Gbps
.large	|4	|8 GB	|80 GB	|1 Gbps
.2xlarge*	|8	|16 GB	|160 GB	|1 Gbps
.4xlarge*	|16	|32 GB	|320 GB	|1 Gbps

Table 4-2: Predefined Compute flavours.

*These compute flavours are intended to be used for transitional purposes and VNF vendors are expected to consume smaller flavours and adopt micro server’s designs for their VNFs

[bookmark: 4.2]

4.2 Network Interface Specifications

The network interface specifications extend the flavour customization to specify the network interface “n” followed by the interface bandwidth (in Gbps) and an alphabetic character defining the number of interfaces with that bandwidth; multiple network interface bandwidths, where network interfaces of different bandwidths exist, can be specified by repeating the “n” option.

<network interface bandwidth option> :: <”n”><number (bandwidth in Gbps)>< # of interfaces of that bandwidth>
<number of interfaces> :: <”” | “D” | “T” | “Q” | “P” | “H”>
where “” represents 1x, “D” 2x, “T” 3x, “Q” 4x, “p” 5x and “H” 6x interfaces of the given bandwidth.

Virtual network interface option	|Description (Bandwidth in Gbps)
—|—
n1, n10, n1T, n1Q, n1P, n1H	|1x 1, 2x 1, 3x 1, 4x 1, 5x 1, 6x 1 Gbps
n10, n10D, n10T, n10Q, n10P, n10H	|1x 10, 2x 10, 3x 10, 4x 10, 5x 10, 6x 10 Gbps
n25, n25D, n25T, n25Q, n25P, n25H	|1x 25, 2x 25, 3x 25, 4x 25, 5x 25, 6x 25 Gbps
n50, n50D, n50T, n50Q, n50P, n50H	|1x 50, 2x 50, 36x 50, 4x 50, 5x 50, 6x 50 Gbps
n100, n100D, n100T, n100Q, n100P, n100H	|1x 100, 2x 100, 3x 100, 4x 100, 5x 100, 6x 100 Gbps

Table 4-3: Virtual Network Interface Specification Examples.
[bookmark: 4.3]

4.3 Storage Extensions

Multiple non-ephemeral storage volumes can be attached to virtual computes for persistent data storage. Each of those volumes can be configured with the required performance category.

.conf	|Read IO/s	|Write IO/s	Read |Throughput (MB/s)	|Write Throughput (MB/s)
—|—|—|—|—
.bronze	|Up to 3K	|Up to 15K	|Up to 180	|Up to 120
.silver	|Up to 60K	|Up to 30K	|Up to 1200	|Up to 400
.gold	|Up to 680K	|Up to 360K	|Up to 2650	|Up to 1400

Table 4-4: Storage Performance Profiles.
[bookmark: 4.3.1]

4.3.1 Available storage extensions

These are non-ephemeral storage extensions that can be provided to VNFs for persistent data storage. More than one storage extension can be provided to a single VNF-C.

.conf	capacity	Read IOPS	Write IOPS	Read Throughput (MB/s)	Write Throughput (MB/s)
———-	———-	————	————	————————	————————-
.bronze1	100GB	Up to 3K	Up to 15K	Up to 180	Up to 120
.bronze2	200GB	Up to 3K	Up to 15K	Up to 180	Up to 120
.bronze3	300GB	Up to 3K	Up to 15K	Up to 180	Up to 120
.silver1	100GB	Up to 60K	Up to 30K	Up to 1200	Up to 400
.silver2	200GB	Up to 60K	Up to 30K	Up to 1200	Up to 400
.silver3	300GB	Up to 60K	Up to 30K	Up to 1200	Up to 400
.gold1	100GB	Up to 680K	Up to 360K	Up to 2650	Up to 1400
.gold2	200GB	Up to 680K	Up to 360K	Up to 2650	Up to 1400
.gold3	300GB	Up to 680K	Up to 360K	Up to 2650	Up to 1400

Table 4-5: Storage extensions for compute flavours.
[bookmark: 4.4]

4.4 Instance types

[bookmark: 4.4.1]

4.4.1	B Instances (Basic)

This instance type is intended to be used for both IT workloads as well as NFV workloads. It has limited IO capabilities (up to 10Gbps Network interface) with a wide range of compute flavours. This instance type is intended to be available in any data centre within any Operator’s network.

[bookmark: 4.4.2]

4.4.2	N Instances (Network Intensive)

This instance type is intended to be used for those applications that has high network throughput requirements (up to 50Gbps). This instance type is more intended for VNFs and is expected to be available in regional (distributed) data centres and more towards the access networks.

4.4.2.1	Network Acceleration Extensions

N instance types can come with Network Acceleration extensions to assist VNFs offloading some of their network intensive operations to hardware. The list below is preliminary and is expected to grow as more network acceleration resources are developed and standardized.

Interface types are aligned with ETSI NFV IFA 002 [4].

.conf	Interface type	Description
————	—————-	—————————————–
.il-ipsec	virtio-ipsec*	In-line IPSec acceleration
.la-crypto	virtio-crypto	Look-Aside encryption/decryption engine

Table 4-7: Acceleration extensions for N instance type.

*Need to work with relevant open source communities to create missing interfaces.

[bookmark: 4.4.3]

4.4.3	C Instances (Compute Intensive)

This instance type is intended to be used for those applications that has high compute requirements and can take advantage of acceleration technologies such as GPU, FPGA, etc. This instance type is intended to be available in local data centers and more towards the Edge of the network.

4.4.3.1	Compute acceleration extensions

C instance types can come with compute acceleration extensions to assist VNFs/VAs offloading some of their compute intensive operations to hardware. The list below is preliminary and is expected to grow as more compute acceleration resources are developed and standardized.

.conf	Interface type	Description
————	—————-	—————————————–
.la-trans	virtio-trans*	Look-Aside Transcoding acceleration
.la-programmable	virtio-programmable	Look-Aside programmable acceleration

Table 4-8: Acceleration extensions for C instance type.

*Need to work with relevant open source communities to create missing interfaces.

[bookmark: 4.4.4]

4.4.4 Network Interface Options

Table 4-6 below shows the various network interfaces options (from Table 4-3) are available for which profile type (Up to 6 interfaces are possible).

| Virtual interface option* | Basic Type | Network Intensive Type | Compute Intensive Type
|—————————|—–|—–|—–
n1, n10, n1T*, n1Q*, n1P*, n1H*	| Y | N |N
n10, n10D, n10T*, n10Q*, n10P*, n10H*	| Y | Y | Y
n25, n25D, n25T*, n25Q*, n25P*, n25H*	| N | Y | Y
n50, n50D, n50T*, n50Q*, n50P*, n50H*	| N | Y | Y
n100, n100D, n100T*, n100Q*, n100P*, n100H* | N | Y | N

Table 4-6: Virtual NIC interfaces options

*These options are intended to be used for transitional purposes. VNFs are expected to use minimum number of interfaces and adopt micro-servers design principles.

[bookmark: 4.5]

4.5 Instance capabilities and metrics.

[bookmark: 4.5.1]

4.5.1 Instance capabilities.

Ref	B Instance	N Instance	C Instance	Notes
———————-	—————————-	—————————-	—————————-	——-
e.nfvi.res.cap.001	As per selected <flavour>	As per selected <flavour>	As per selected <flavour>	Exposed resource capabilities as per Table 3-5.
e.nfvi.res.cap.002	As per selected <flavour>	As per selected <flavour>	As per selected <flavour>	
e.nfvi.res.cap.003	As per selected <flavour>	As per selected <flavour>	As per selected <flavour>	
e.nfvi.res.cap.004	As per selected			

 5 Reference NFVI SW profiles and configurations

 << Back

5	Reference NFVI SW profiles and configurations

[image: scope]

Table of Contents

	5.1 NFVI SW profile description.

	5.1.1 Virtual Compute.

	5.1.2 Virtual Storage.

	5.1.3 Virtual Networking.

	5.1.4 Security.

	5.2 NFVI reference SW profiles and configurations.

	5.2.1 Virtual Compute features and configurations.

	5.2.2 Virtual Storage features and configurations.

	5.2.3 Virtual Networking features and configurations.

[bookmark: 5.1]

5.1 NFVI SW profile description

NFVI Software layer is composed of 2 layers, Figure 5-1:

	The virtualisation Infrastructure layer, which is based on hypervisor virtualisation technology or container-based virtualisation technology. Container virtualisation can be nested in hypervisor-based virtualisation

	The host OS layer

[image: ref_profiles]

Figure 5-1: NFVI software layers.
For a host (compute node or physical server), the virtualization layer is an abstraction layer between hardware components (compute, storage and network resources) and virtual resources allocated to VNF-C, each VNF-C generally maps 1:1 against a single VM or a single container/pod. Figure 5-2 represents the virtual resources (virtual compute, virtual network and virtual storage) allocated to VNF-C and managed by the VIM.

[image: b_ref_profile]

Figure 5-2: NFVI- Virtual resources.
Depending on the requirements of VNFs, a VNFC will be deployed with a NFVI instance type and an appropriate compute flavour. A NFVI instance type is defined by a NFVI SW profile and a NFVI HW profile. A NFVI SW profile is a set of virtual resources with specific behaviour, capabilities and metrics. Figure 5-3 depicts a high level view of software profiles for Basic, Network Intensive and Compute intensive instances types.

[image: ref_profiles]

Figure 5-3: NFVI software profiles.
The following sections detail the NFVI SW profile features per type of virtual resource. The list of these features will evolve over time.

5.1.1	Virtual Compute

Table 5-1 and Table 5-2	depict the features related to virtual compute.

.conf	Feature	Type	Description
——————	—————-	—————-	————————————————————————————————
nfvi.com.cfg.001	Support of flavours	Flavours	Support of compute Flavours defined in Compute Flavour’s catalogue.
nfvi.com.cfg.002	CPU partionning	Value	CPU dedicated to the host and CPU dedicated to VNFs
nfvi.com.cfg.003	CPU allocation ratio	Value	Number of virtual cores per physical core
nfvi.com.cfg.004	NUMA awareness	Yes/No	Support of NUMA at the virtualization layer
nfvi.com.cfg.005	CPU pinning capability	Yes/No	Binding of a process to a dedicated CPU
nfvi.com.cfg.006	Huge Pages	Yes/No	Ability to manage huge pages of memory

Table 5-1: Virtual Compute features.
.conf	Feature	Type	Description
——————	—————-	—————-	————————————————————————————————
nfvi.com.acc.cfg.001	Editor Note: To be worked on		

Table 5-2: Virtual Compute Acceleration features.
[bookmark: 5.2]

5.1.2	Virtual Storage

Table 5-3 and Table 5-4 depict the features related to virtual storage.

.conf	Feature	Type	Description															
——————	—————-	—————-	————————————————————————————————															
nfvi.stg.cfg.001	Storage Types		Supported Storage types.															
nfvi.stg.cfg.002	Storage Block	Yes/No			nfvi.stg.cfg.003	Storage Object	Yes/No			nfvi.stg.cfg.004	Storage with replication	Yes/No			nfvi.stg.cfg.005	Storage with encryption	Yes/No	

Table 5-3: Virtual Storage features.
.conf	Feature	Type	Description
——————	—————-	—————-	————————————————————————————————
nfvi.stg.acc.cfg.001	Storage IOPS oriented	Yes/No	
nfvi.stg.acc.cfg.002	Storage capacity oriented	Yes/No	

Table 5-4: Virtual Storage Acceleration features.

5.1.3 Virtual Networking

Table 5-5 and Table 5-6 depict the features related to virtual networking.

.conf	Feature	Type	Description					
——————	—————-	—————-	————————————————————————————————					
nfvi.net.cfg.001	vNIC interface	IO virtualisation	e.g. virtio1.1, i40evf (Intel driver for VF SR-IOV).					
nfvi.net.cfg.002	Overlay protocol	Protocols	The overlay network encapsulation protocol needs to enable ECMP in the underlay to take advantage of the scale-out features of the network fabric.					
nfvi.net.cfg.003	NAT	Yes/No	Support of Network Address Translation					
nfvi.net.cfg.004	Security Groups	Yes/No	Set of rules managing incoming and outgoing network traffic					
nfvi.net.cfg.005	SFC	Yes/No	Support of Service Function Chaining		nfvi.net.cfg.006	Traffic patterns symmetry	Yes/No	Traffic patterns should be optimal, in terms of packet flow. North-south traffic shall not be concentrated in specific elements in the architecture, making those critical choke-points, unless strictly necessary (i.e. when NAT 1:many is required).
nfvi.net.cfg.007	Horizontal scaling	Yes/No	The VNF cluster must be able to scale horizontally and to leverage technologies such as ECMP to enable scale-outs/scale-ins, privileging Active-Active HA models, even though this may require some level of application re-design to cope with the need of sharing state between VNF instances					

Table 5-5: Virtual Networking features.
.conf	Feature	Type	Description
——————	—————-	—————-	————————————————————————————————
nfvi.net.acc.cfg.001	vSwitch optimization	Yes/No and SW Optimization	e.g. DPDK.
nfvi.net.acc.cfg.002	Support of HW offload	Yes/No	e.g. support of SR-IOV, SmartNic.
nfvi.net.acc.cfg.003	Crypto acceleration	Yes/No	
nfvi.net.acc.cfg.004	Crypto Acceleration Interface	Yes/No	

Table 5-6: Virtual Networking Acceleration features.

5.1.4	Security

[bookmark: 5.2]

5.2	NFVI reference SW profiles and configurations

This section will detail NFVI SW profiles and associated configurations for the 3 types of NFVI instances: Basic, Network intensive and Compute intensive.

5.2.1	Virtual Compute features and configurations

Table 5-7 depicts the features and configurations related to virtual compute for the 3 types of reference NFVI instances.

.conf	Feature	Type	Basic	Network Intensive	Compute Intensive
——————	—————-	—————-	—————-	—————-	—————-
nfvi.com.cfg.001	Support of flavours	Yes/No	Y	Y	Y
nfvi.com.cfg.002	CPU partionning	value			
nfvi.com.cfg.003	CPU allocation ratio	value	1:4	1:1	1:1
nfvi.com.cfg.004	NUMA awareness	Yes/No	N	Y	Y
nfvi.com.cfg.005	CPU pinning capability	Yes/No	N	Y	Y
nfvi.com.cfg.006	Huge Pages	Yes/No	N	Y	Y

Table 5-7: Virtual Compute features and configuration for the 3 types of SW profiles.
Table 5-8 will gather virtual compute acceleration features. It will be filled over time.

.conf	Feature	Type	Basic	Network Intensive	Compute Intensive
——————	—————-	—————-	—————-	—————-	—————-
nfvi.com.acc.cfg.001	Editor Note: To be worked on				

Table 5-8: Virtual Compute Acceleration features.

5.2.2	Virtual Storage features and configuration

Table 5-9 and Table 5-10 depict the features and configurations related to virtual storage for the 3 types of reference NFVI instances.

.conf	Feature	Type	Basic	Network Intensive	Compute Intensive							
——————	—————-	—————-	—————-	—————-	—————-							
nfvi.stg.cfg.001	Catalogue storage Types	Yes/No	Y	Y	Y		nfvi.stg.cfg.002	Storage Block	Yes/No	Y	Y	Y
nfvi.stg.cfg.003	Storage Object	Yes/No	Y	Y	Y							
nfvi.stg.cfg.004	Storage with replication	Yes/No	N	Y	Y							
nfvi.stg.cfg.005	Storage with encryption	Yes/No	N	N	Y							

Table 5-9: Virtual Storage features and configuration for the 3 types of SW profiles.
Table 5-10 depicts the features related to Virtual storage Acceleration

.conf	Feature	Type	Basic	Network Intensive	Compute Intensive							
——————	—————-	—————-	—————-	—————-	—————-							
nfvi.stg.acc.cfg.001	Storage IOPS oriented	Yes/No	N	Y	Y		nfvi.stg.acc.cfg.002	Storage capacity oriented	Yes/No	N	N	Y

Table 5-10: Virtual Storage Acceleration features.

5.2.3 Virtual Networking features and configurations

Table 5-11 and Table 5-12 depict the features and configurations related to virtual networking for the 3 types of reference NFVI instances.

.conf	Feature	Type	Basic	Network Intensive	Compute Intensive
——————	—————-	—————-	—————-	—————-	—————-
nfvi.net.cfg.001	vNIC interface	IO virtualisation	virtio1.1	virtio1.1, i40evf (Intel driver for VF SR-IOV)	virtio1.1, i40evf (Intel driver for VF SR-IOV)
nfvi.net.cfg.002	Overlay protocol	Protocols	VXLAN, MPLSoUDP, GENEVE, other	VXLAN, MPLSoUDP, GENEVE, other	VXLAN, MPLSoUDP, GENEVE, other
nfvi.net.cfg.003	NAT	Yes/No	Y	Y	Y
nfvi.net.cfg.004	Security Group	Yes/No	Y	Y	Y
nfvi.net.cfg.005	SFC support	Yes/No	N	Y	Y
nfvi.net.cfg.006	Traffic patterns symmetry	Yes/No	Y	Y	Y
nfvi.net.cfg.007	Horizontal scaling	Yes/No	Y	Y	Y

Table 5-11: Virtual Networking features and configuration for the 3 types of SW profiles.
.conf	Feature	Type	Basic	Network Intensive	Compute Intensive
——————	—————-	—————-	—————-	—————-	—————-
nfvi.net.acc.cfg.001	vSwitch optimization	YeS/No and SW Optimization	N	Y, DPDK	Y, DPDK
nfvi.net.acc.cfg.002	Support of HW offload	YeS/No	N	Y, support of SR-IOV and SmartNic	Y, support of SR-IOV and SmartNic
nfvi.net.acc.cfg.003	Crypto acceleration	Yes/No	N	Y	Y
nfvi.net.acc.cfg.004	Crypto Acceleration Interface	Yes/No	N	Y	Y

Table 5-12: Virtual Networking Acceleration features.

 6 Reference NFVI HW profiles and configurations

 << Back

6	Reference NFVI HW profiles and configurations

[image: scope]

Table of Contents

	6.1 Hardware Profile and Capabilities Model.

	6.2 Compute Resource Configurations.

	6.2.1	Compute Acceleration Hardware Specifications

	6.3 Network Resources Configurations.

	6.3.1	NIC configurations

	6.3.2	PCIe configurations

	6.3.3	Network Acceleration Configurations

	6.4 Storage Configurations.

	6.5 Security Configuration.

The support of a variety of different workload types, each with different (sometimes conflicting) compute, storage and network characteristics, including accelerations and optimizations, drives the need to aggregate these characteristics as a hardware (host) profile and capabilities. A host profile is essentially a “personality” assigned to a compute host (physical server, also known as compute host, host, node or pServer). The host profiles and related capabilities consist of the intrinsic compute host capabilities (such as #CPUs (sockets), # of cores/CPU, RAM, local disks and their capacity, etc.), and capabilities enabled in hardware/BIOS, specialised hardware (such as accelerators), the underlay networking and storage.

This chapter defines a simplified host, host profile and related capabilities model associated with each of the different NFVI hardware profile and related capabilities; some of these profiles and capability parameters are shown in Figure 6-1.

[image: ref_hw_profiles]

Figure 6-1: NFVI hardware profiles and host associated capabilities.
[bookmark: 6.1]

6.1	Hardware Profile and Capabilities Model

The host profile model and configuration parameters (hereafter for simplicity simply “host profile”) will be utilized in the Reference Architecture to define different hardware profiles. The host profiles can be considered to be the set of EPA-related (Enhanced Performance Awareness) configurations on NFVI resources.

Please note that in this chapter we shall not list all of the EPA-related configuration parameters.

A software profile (see Chapter 4 and Chapter 5) defines the characteristics of NFVI SW of which Virtual Machines (or Containers) will be deployed on. A many to many relationship exists between software profiles and host profiles. A given host can only be assigned a single host profile; a host profile can be assigned to multiple hosts. Different Cloud Service Providers (CSP) may utilize different naming standards for their host profiles.

The following naming convention is used in this document:

<host profile name>:: <”hp”><numeral host profile sequence #>

When a software profile is associated with a host profile, a qualified name can be used as specified below. For Example: for software profile “n” (network intensive) the above host profile name would be “n-hp1”.

<qualified host profile>:: <software profile><”-“><”hp”><numeral host profile sequence #>

 7 APIs & Interfaces

 << Back

7	APIs & Interfaces

[image: scope]

Table of Contents

	7.1 Infra related APIs.

	7.2 NFVI APIs.

	7.2.1 Tenant Level APIs.

	7.3 Supporting Enabler Service APIs (not-MVP).

	7.3.1 NTP, DNS, etc.

	7.3.2 Licensing and imaging connectivity.

	7.4 Acceleration Interfaces and APIs (not-MVP).

	7.5 Tool functionalities needed (not-MVP).

	7.5.1 Categorized (not specifically named).

	7.5.2 Policies and Security related primarily.

	7.5.3 If embedded in VM.

	7.6 Cloud agnostic (not-MVP).

	7.7 IPL (Reference Model component only) (not-MVP).

In this document’s earlier chapters, the various resources and capabilities of the NFVI have been catalogued and the workloads (VNFs) have been profiled with respect to those capabilities. The intent behind this chapter and an “API Layer” is to similarly provide a single place to catalogue and thereby codify, a common set of open APIs to access (i.e. request, consume, control, etc.) the aforementioned resources, be them directly exposed to the VNFs, or purely internal to the NFVI.

It is a further intent of this chapter and this document to ensure the APIs adopted for CNTT NFVI implementations are open and not proprietary, in support of compatibility, component substitution and ability to realize maximum value from existing and future test heads and harnesses.

While it is the intent of this chapter, when included in a Reference Architecture, to catalogue the APIs, it is not the intent of this chapter to reprint the APIs, as this would make maintenance of the chapter impractical and the length of the chapter disproportionate within the Reference Model document. Instead, the APIs selected for CNTT NFVI implementations and specified in this chapter, will be incorporated by reference and URLs for the latest, authoritative versions of the APIs, provided in the References section of this document.

Although the document does not attempt to reprint the APIs themselves, where appropriate and generally where the mapping of resources and capabilities within the NFVI to objects in APIs would be otherwise ambiguous, this chapter shall provide explicit identification and mapping.

In addition to the raw or base-level NFVI functionality to API and object mapping, it is further the intent to specify an explicit, normalized set of APIs and mappings to control the logical interconnections and relationships between these objects, notably, but not limited to, support of SFC (Service Function Chaining) and other networking and network management functionality.
It is initially proposed to divide the APIs into three primary categories, each reflecting a specific domain relative to the NFVI, as follows, and described in detail in the first three sections of this chapter:

	Intra-Infrastructure (NFVI) APIs

	NFVI APIs

	Enabler Services APIs

Infra Related: These APIs are provided and consumed directly by the infra. These APIs are purely internal to the NFVI, and not exposed to VNF workloads.

NFVI APIs: These APIs are provided to the VNF workloads (i.e. exposed), by the infra.

Enabler Services: These APIs are provided by functions which may be instantiated at higher layers (i.e. in user or workload space), and provide facilities that are required for a majority of VNFs. For example, DHCP, DNS, NTP, DBaaS, etc. Note, in some cases Enabler Services may mirror services provided within the Infra, such as DNS or DHCP. However, the purpose in this section is explicitly to describe instances of those services which are both hosted and consumed above the Infra water mark.

[bookmark: 7.1]

7.1	Infra-Related APIs

This is a place holder for Infra Related APIs.

[bookmark: 7.2]

7.2	NFVI APIs

The NFVI APIs consist of set of APIs that are externally and internally visible. The externally visible APIs are made available for orchestration and management of the execution environments that host workloads (e.g., VNFs) while the internally visible APIs support actions on the hypervisor and the physical resources. The ETSI NFV Reference Architecture Framework (Figure 7-1) shows a number of Interface points where specific or sets of APIs are supported. For the scope of the reference model the relevant interface points are shown in Table 7-1.

[image: ETSI NFVI Interface]

Figure 7-1: ETSI NFVI Interface points.
Interface Point	NFVI Exposure	Interface Between	Description
————–	————–	————–	————–
Vi-Ha	Internal NFVI	Software Layer and Hardware Resources	1. Discover/collect resources and their configuration information 2. Create execution environment (e.g., VM) for workloads (VNF)
Vn-Nf	External	NFVI and VM (VNF)	Represents the execution environment. There is no protocol or interface defined between these layers. Advantage is that the workloads can be made NFVI independent except for performance
NF-Vi	External	NFVI and VIM	1. Discover/collect physical/virtual resources and their configuration information2. Manage (create, resize, (un) suspend, reboot, etc.) physical/virtualised resources3. Physical/Virtual resources configuration changes4. Physical/Virtual resource configuration.
Or-Vi	External	VNF Orchestrator and VIM	See below
Vi-Vnfm	External	VNF Manager and VIM	See below

 8 Security

 << Back

8	Security

[image: scope]

Table of Contents

	8.1 Common standards.

	8.1.1 Potential attack vectors.

	8.1.1 Testing demarcation points.

	8.2 Operator responsibility.

	8.3 VNF Vendors responsibility.

	8.4 NFVI Vendors responsibility

[bookmark: 8.1]

8.1 Common standards

Security vulnerabilities and attack vectors are everywhere. The telecom industry and its cloud infrastructures are even more vulnerable to potential attacks due to the ubiquitous nature of the infrastructures and services combined with the vital role Telecommunications play in the modern world. The attack vectors are many and varied, ranging from the potential for exposure of sensitive data, both personal and corporate, to weaponized disruption to the global Telecommunications networks. The threats can take the form of a physical attack on the locations the infrastructure hardware is housed, to network attacks such as denial of service and targeted corruption of the network service applications themselves. Whatever the source, any NFVI infrastructure built needs to be able to withstand attacks in whatever form they take.

With that in mind, the NFVI reference model and the supporting architectures are not only required to optimally support networking functions, but they must be designed with common security principles and standards from inception. These best practices must be applied at all layers of the infrastructure stack and across all points of interconnections with outside networks, APIs and contact points with the NFV network functions overlaying or interacting with that infrastructure.
Standards organizations with recommendations and best practices, and certifications that need to be taken into consideration include the following examples. However this is by no means an exhaustive list, just some of the more important standards in current use.

•	Center for Internet Security - https://www.cisecurity.org/

•	Cloud Security Alliance - https://cloudsecurityalliance.org/

•	Open Web Application Security Project https://www.owasp.org

•	The National Institute of Standards and Technology (NIST) (US Only)

•	FedRAMP Certification https://www.fedramp.gov/ (US Only)

•	ETSI Cyber Security Technical Committee (TC CYBER) - https://www.etsi.org/committee/cyber

•	ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) - www.iso.org. The following ISO standards are of particular interest for NFVI

o	ISO/IEC 27002:2013 - ISO/IEC 27001 is the international Standard for best-practice information security management systems (ISMSs).

o	ISO/IEC 27032 - ISO/IEC 27032is the international Standard focusing explicitly on cybersecurity.

o	ISO/IEC 27035 - ISO/IEC 27035 is the international Standard for incident management. Incident management

o	ISO/IEC 27031 - ISO/IEC 27031 is the international Standard for ICT readiness for business continuity.

A good place to start to understand the requirements is to use the widely accepted definitions developed by the OWASP – Open Web Application Security Project. These include the following core principles:

•	Confidentiality – Only allow access to data for which the user is permitted

•	Integrity – Ensure data is not tampered with or altered by unauthorized users

•	Availability – ensure systems and data are available to authorized users when they need it

Additional NFVI security principles that need to be incorporated:

•	Authenticity – The ability to confirm the users are in fact valid users with the correct rights to access the systems or data.

[bookmark: 8.1.1]

8.1.1 Potential attack vectors.

Previously attacks designed to place and migrate workload outside the legal boundaries were not possible using traditional infrastructure, due to the closed nature of these systems. However, using NFVI, violation of regulatory policies and laws becomes possible by actors diverting or moving a VNF from an authenticated and legal location to another potentially illegal location. The consequences of violating regulatory policies may take the form of a complete banning of service and/or an exertion of a financial penalty by a governmental agency or through SLA enforcement. Such vectors of attack may well be the original intention of the attacker in an effort to harm the service provider. One possible attack scenario can be when an attacker exploits the insecure VNF API to dump the records of personal data from the database in an attempt to violate user privacy. NFVI operators should ensure that VNF APIs are secure, accessible over a secure network (TLS) under very strict set of security best practices and RBAC policies to limit exposure of this vulnerability.

[bookmark: 8.1.2]

8.1.2 Testing demarcation points.

It is not enough to just secure all potential points of entry and hope for the best, any NFVI architecture must be able to be tested and validated that it is in fact protected from attack as much as possible. The ability to test the infrastructure for vulnerabilities on a continuous basis is critical for maintaining the highest level of security possible. Testing needs to be done both from the inside and outside of the systems and networks. Below is a small sample of some of the testing methodologies and frameworks available.

•	OWASP testing guide

•	PCI Penetration testing guide

•	Penetration Testing Execution Standard

•	NIST 800-115

o	VULCAN: Vulnerability Assessment Framework for Cloud Computing (NIST)

•	Penetration Testing Framework

•	Information Systems Security Assessment Framework (ISSAF)

•	Open Source Security Testing Methodology Manual (“OSSTMM”)

•	FedRAMP Penetration Test Guidance (US Only)

•	CREST Penetration Testing Guide

Insuring that the security standards and best practices are incorporated into the NFVI model and architectures must be a shared responsibility, among the Telecommunications operators interested in building and maintaining the infrastructures in support of their services, the VNF vendors developing the network services that will be consumed by the operators, and the NFVI vendors creating the infrastructures for their Telecommunications customers. All of the parties need to incorporate security and testing components, and maintain operational processes and procedures to address any security threats or incidents in an appropriate manner. Each of the stakeholders need to contribute their part to create effective security for NFVI.

[bookmark: 8.2]

8.2 Operator responsibility.

The Operator’s responsibility is to not only make sure that security is included in all the vendor supplied infrastructure and NFV components, but it is also responsible for the maintenance of the security functions from an operational and management perspective. This includes but is not limited to securing the following elements:

•	Maintaining standard security operational management methods and processes

•	Monitoring and reporting functions

•	Processes to address regulatory compliance failure

•	Support for appropriate incident response and reporting

•	Methods to support appropriate remote attestation certification of the validity of the security components, architectures and methodologies used

Remote Attestation/openCIT

NFVI operators must ensure that remote attestation methods are used to remotely verify the trust status of a given NFVI platform. The basic concept is based on boot integrity measurements leveraging the TPM built into the underlying hardware. Remote attestation can be provided as a service, and may be used by either the platform owner or a consumer/customer to verify that the platform has booted in a trusted manner. Practical implementations of the remote attestation service include the open cloud integrity tool (Open CIT). Open CIT provides ‘Trust’ visibility of the cloud infrastructure and enables compliance in cloud datacenters by establishing the root of trust and builds the chain of trust across hardware, operating system, hypervisor, VM and container. It includes asset tagging for location and boundary control. The platform trust and asset tag attestation information is used by Orchestrators and/or Policy Compliance management to ensure workloads are launched on trusted and location/boundary compliant platforms. They provide the needed visibility and auditability of infrastructure in both public and private cloud environments.

Insert diagram here:
https://01.org/sites/default/files/users/u26957/32_architecture.png

VNF Image Scanning / Signing

It is easy to tamper with VNF images. It requires only a few seconds to insert some malware into a VNF image file while it is being uploaded to an image database or being transferred from an image database to a compute node. To guard against this possibility, VNF images can be cryptographically signed and verified during launch time. This can be achieved by setting up a signing authority and modifying the hypervisor configuration to verify an image’s signature before they are launched. To implement image security, the VNF operator must test the image and supplementary components verifying that everything conforms to security policies and best practices.

[bookmark: 8.3]

8.3 VNF Vendors responsibility.

The VNF vendors need to incorporate security elements to support the highest level of security of the networks they support. This includes but is not limited to securing the following elements:

•	Operating system or container

•	Application

•	Network interfaces

•	Management and controller systems used to support the VNFs directly, examples include a SIEM system or a SD WAN policy manager

•	Regulatory compliance failure as it relates to the application itself only

Image from https://www.networkworld.com/article/2840273/sdn-security-attack-vectors-and-sdn-hardening.html Will replace with a better image when I create it in the future.

[bookmark: 8.4]

8.4 NFVI Vendors responsibility

The NFVI vendors need to incorporate security elements to support the highest level of security of the infrastructure they support. This includes but is not limited to securing the following elements:

•	Hypervisor

•	VM/container management system

•	APIs

•	Network interfaces

•	Networking security zoning

•	Platform patching mechanisms

•	Regulatory compliance Failure

Networking Security Zoning

Network segmentation is important to ensure that VMs can only communicate with the VMs they are supposed to. To prevent a VM from impacting other VMs or hosts, it is a good practice to separate VM traffic and management traffic. This will prevent attacks by VMs breaking into the management infrastructure. It is also best to separate the VLAN traffic into appropriate groups and disable all other VLANs that are not in use. Likewise, VMs of similar functionalities can be grouped into specific zones and their traffic isolated. Each zone can be protected using access control policies and a dedicated firewall based on the needed security level.

Recommended practice to set network security policies following the principle of least privileged, only allowing approved protocol flows. For example, set ‘default deny’ inbound and add approved policies required for the functionality of the application running on the NFVI infrastructure.

Encryption

Virtual volume disks associated with VNFs may contain sensitive data. Therefore, they need to be protected. Best practice is to secure the VNF volumes by encrypting them and storing the cryptographic keys at safe locations. Be aware that the decision to encrypt the volumes might cause reduced performance, so the decision to encrypt needs to be dependent on the requirements of the given infrastructure. The TPM module can also be used to securely store these keys. In addition, the hypervisor should be configured to securely erase the virtual volume disks in the event a VNF crashes or is intentionally destroyed to prevent it from unauthorized access.

•	Composition analysis: New vulnerabilities are discovered in common open source libraries every week. As such, mechanisms to validate components of the VNF application stack by checking libraries and supporting code against the Common Vulnerabilities and Exposures (CVE) databases to determine whether the code contains any known vulnerabilities must be embedded into the NFVI architecture itself. Some of the components required include:

•	Tools for checking common libraries against CVE databases integrated into the deployment and orchestration pipelines.

•	The use of Image scanners such as OpenSCAP to determine security vulnerabilities

Platform Patching

NFVI operators should ensure that the platform including the components (hypervisors, VMs, etc.) are kept up to date with the latest patch.

Boot Integrity Measurement (TPM)

Using trusted platform module (TPM) as a hardware root of trust, the measurement of system sensitive components such as platform firmware, BIOS, bootloader, OS kernel, and other system components can be securely stored and verified. NFVI Operators should ensure that the platform measurement can only be taken when the system is reset or rebooted; there needs to be no ability to write the new platform measurement in TPM during system run-time. The validation of the platform measurements can be performed by TPM’s launch control policy (LCP) or through the remote attestation server

 9 Operations (OA&M)

 << Back

9	Operations (OA&M)

[image: scope]

Table of Contents

	9.1	MVP Status.

	9.2 Draft Chapter Outline.

The purpose of this chapter is to ensure the infra is supportable / maintainable by Operations, and it should include direct Ops group input. It includes requirements identified for operation and maintenance of the infra, after it is built and deployed (i.e. in production). Telco infra is by definition, HA/non-stop, so this chapter ensures requirements related to maintaining the infra w/o the need to take it out of service or impact the VNFs and without using excessive human labo